Схема гидроэлектростанции.  Гидроэлектростанции (ГЭС)

ГЭС - это гидроэлектростанция, преобразующая энергию водного потока в электрическую. Поток воды, падая на лопасти, вращает турбины, которые, в свою очередь, приводят в движение генераторы, преобразующие механическую энергию в электрическую. Гидроэлектростанции сооружаются на руслах рек, при этом обычно строятся плотины и водохранилища.

Принцип работы

Основа работы ГЭС - это энергия падающей воды. Из-за разности уровней речная вода образует непрерывный поток от истока к устью. Плотина - неотъемлемая часть практически всех гидроэлектростанций, перекрывает движение воды в русле реки. Перед плотиной образуется водохранилище, создавая значительную разницу уровня воды до и после нее.

Верхний и нижний уровень воды называют бьефом, а разницу между ними - высотой падения или напором. Принцип работы достаточно прост. На нижнем бьефе устанавливается турбина, на лопасти которой направляется поток с верхнего бьефа. Падающий поток воды приводит в движение турбину, а она через механическую связь вращает ротор электрического генератора. Чем больше напор и количество воды, проходящее через турбины, тем выше мощность гидроэлектростанции. Коэффициент полезного действия составляет около 85%.

Особенности

Существует три фактора эффективного производства энергии на гидроэлектростанциях:

  • Круглогодичная гарантированная водообеспеченность.
  • Благоприятствующий рельеф. Наличие каньонов и перепадов способствуют гидростроительству.
  • Больший уклон реки.

Эксплуатация гидроэлектростанция имеет несколько, в том числе сравнительных особенностей:

  • Себестоимость производимой электроэнергии существенно меньше, чем на других видах электростанций.
  • Возобновляемый источник энергии.
  • В зависимости от количества энергии, которое должна производить ГЭС, ее генераторы можно быстро включать и выключать.
  • По сравнению с другими видами электростанций ГЭС намного меньше влияет на воздушную среду.
  • В основном ГЭС - это удаленные от потребителей объекты.
  • Строительство гидроэлектростанций очень капиталоемкое.
  • Водохранилища занимают большие территории.
  • Строительство плотин и устройство водохранилищ перекрывает многим видам рыб пути к нерестилищам, что кардинально меняет характер рыбного хозяйства. Но при этом в самом водохранилище устраиваются рыбоводческие хозяйства, увеличиваются запасы рыбы.

Виды

Гидроэлектростанции разделяют по характеру возведенных сооружений:

  • Приплотинные ГЭС - это самые распространенные в мире станции, в которых напор создается плотиной. Строятся на реках с преимущественно небольшим уклоном. Для создания большого напора под водохранилища затопляются значительные территории.
  • Деривационные - станции, сооружаемые на горных реках с большим уклоном. Нужный напор создается в обходных (деривационных) каналах при сравнительно малом расходе воды. Часть потока реки через водозабор направляется в трубопровод, в котором создается напор, что приводит в движение турбину.
  • Гидроаккумулирующие станции. Они помогают справиться энергосистеме с пиковыми нагрузками. Гидроагрегаты таких станций способны работать в насосном и генераторном режиме. Состоят из двух водохранилищ в разных уровнях, соединенных трубопроводом с гидроагрегатом внутри. При высоких нагрузках вода сбрасывается из верхнего водохранилища в более низкое, при этом происходит вращение турбины и вырабатывается электричество. При низком спросе вода перекачивается назад из низкого хранилища в более высокое.

Гидроэнергетика России

На сегодняшний день в России суммарно вырабатывается более 100 МВт электроэнергии на 102 гидроэлектростанциях. Общая мощность всех гидроагрегатов ГЭС России составляет порядка 45 млн кВт, что соответствует пятому месту в мире. Доля ГЭС в общем количестве вырабатываемой электроэнергии в России составляет 21 % - 165 млрд кВт*ч/год, что также соответствует 5 месту в мире. По количеству потенциальных гидроэнергоресурсов Россия стоит на втором месте после Китая с показателем 852 млрд кВт*ч, но при этом степень их освоения составляет лишь 20%, что существенно ниже, чем практически у всех стран мира, в том числе развивающихся. Для освоения гидропотенциала и развития российской энергетики в 2004 году была создана Федеральная программа по обеспечению надежной эксплуатации функционирующих гидроэлектростанций, завершение действующих строек, проектирование и возведение новых станций.

Список крупнейших ГЭС России

  • Красноярская ГЭС — г. Дивногорск, на реке Енисей.
  • Братская ГЭС — г. Братск, р. Ангара.
  • Усть-Илимская — г. Усть-Илимск, р. Ангара.
  • Саяно-Шушенская ГЭС — г. Саяногорск.
  • Богучанская ГЭС — на реке. Ангара.
  • Жигулёвская ГЭС — г. Жигулевск, р. Волга.
  • Волжская ГЭС — г. Волжский, Волгоградская обл, река Волга.
  • Чебоксарская — г. Новочебоксарск, река Волга.
  • Бурейская ГЭС — пос. Талакан, река Бурея.
  • Нижнекамская ГЭС — Челны, р. Кама.
  • Воткинская — г. Чайковский, р. Кама.
  • Чиркейская — река. Сулак.
  • Загорская ГАЭС — река. Кунья.
  • Зейская — г. Зея, р. Зея.
  • Саратовская ГЭС — река. Волга.

Волжская ГЭС

В прошлом Сталинградская и Волгоградская ГЭС, а ныне «Волжская», расположенная в одноименном городе Волжский на реке Волга, средненапорная станция руслового типа. На сегодняшний день считается крупнейшей гидроэлектростанцией в Европе. Количество гидроагрегатов - 22, электрическая мощность - 2592,5 МВт, среднегодовое количество вырабатываемой электроэнергии 11,1 млрд кВт*ч. Пропускная способность гидроузла - 25000 м3/с. Большая часть вырабатываемой электроэнергии поставляется местным потребителям.

Возведение ГЭС стартовало в 1950 году. Пуск первого гидроагрегата был осуществлен в декабре 1958. В полном объеме Волжская гидроэлектростанция заработала в сентябре 1961 года. Ввод в эксплуатацию сыграл важнейшую роль в объединении значимых энергосистем Поволжья, Центра, Юга и энергоснабжения Нижнего Поволжья и Донбасса. Уже в 2000-х годах было произведено несколько модернизаций, что позволило увеличить общую мощность станции. Кроме производства электроэнергии Волжская ГЭС используется для орошения засушливых земельных массивов Заволжья. На сооружениях гидроузла устроены автодорожные и железнодорожные переходы через Волгу, обеспечивающие связь районов Поволжья между собой.

На Руси водяные силовые установки строились на реках с незапамятных времен. Из сохранившихся древних летописей известно, что русские люди уже в XIII в. искусно сооружали вододействующие установки для вращения мельничных жерновов.

В XIV-XV вв. водяные мельницы были уже широко распространены. О них упоминается в рукописных документах того времени. Еще шире стали использовать природную энергию рек в XVI и XVII вв. Под Москвой на р. Неглинной в 1519 г. работали уже три водяные мельницы и одна толчея, очищавшая зерно в ступах. Но все эти установки с водяными колесами были небольшой мощности.

В 1524 г., как говорит Псковская летопись, новгородцы под руководством «некоего хитреца» мастера Нережи Псковитина дерзнули создать плотину и мощную гидросиловую установку на полноводном и глубоком Волхове. Эта гидроустановка, построенная впервые в мире на большой реке, некоторое время успешно работала.

А через 400 лет на том же многоводном Волхове советские люди воздвигли из бетона и стали мощную гидроэлектростанцию. С декабря 1926 г. она безотказно посылает энергию заводам, городам, селам. Так было положено начало сооружению мощных гидроэлектрических установок на реках нашей страны.

Реки по своей природе очень разнообразны. Например, бурливый, гремящий Терек берет начало в подоблачных ледниках Казбека. Он совсем не похож на широкую Волгу, плавно, неторопливо несущую свои воды в невысоких берегах.

Понятно, что получать энергию от горного Терека и от равнинной Волги надо не одинаковым способом. Гидростанции на этих двух реках должны быть совершенно различными по устройству. Так, на круто падающих и стремительных горных потоках отводят воду деривационным каналом (см. ст. «»). От конца канала вниз по склону проложены трубы. По ним вода под напором течет к зданию электростанции. Оно стоит в глубине долины на берегу реки. Если скалы на склонах ущелья крутые и недоступные, воду отводят подземным деривационным туннелем. На полноводных реках, спокойно протекающих по пологим равнинам, напор создают плотиной. Гидроэлектрические установки такого типа на горных реках называют деривационными, а обычные, на равнинных реках, - плотинными.

Как же устроена мощная плотинная гидроэлектрическая станция, похожая, например, на крупнейшую Волжскую гидростанцию?

Основные сооружения гидроэлектростанции на равнинной реке - плотина и здание ГЭС. Уровень воды перед плотиной выше, чем вниз по течению реки. Эту разницу в высотах уровней называют напором гидростанции. Вода, непрерывно переливающаяся с более высокого уровня на низкий, может выполнять большую полезную работу.

Разрез гидроэлектрической станции (ГЭС): 1 - сороудерживающая решетка; 2 - кран для подъема и спуска затвора; 3 - водослив; 4 - здание ГЭС; 5 - судоподъемник; 6 -электрогенератор; 7 - гидротурбина; 8 - всасывающая труба; 9 - трансформатор; 10 - подвод воды; 11 - тело плотины; 12 - смотровые галереи.

Перед плотиной гидростанции обычно образуется водохранилище. Весной оно пополняется талыми водами и сохраняет их до наступления зимы. А зимой или в летнюю засуху водохранилище изо дня в день добавляет воду к скудному в эти времена года природному стоку реки. Так поддерживается мощность электростанции, которая весь год должна быть достаточно равномерной.

В состав гидроустановки 4 на равнинной реке обычно входят бетонная и земляная плотины. Бетонная плотина необходима для сброса через нее лишних весенних паводковых вод. Остальную часть плотины обычно строят из земли и песка.

В здании гидростанции размещается основное машинное оборудование - турбины и генераторы, вырабатывающие электрическую энергию. Водяную турбину и соединенный с ней электрический генератор называют машинным агрегатом гидроэлектрической станции.

Водяная турбина, или гидротурбина, - главный двигатель гидростанции. На гидростанциях с низким напором воды, не выше 50-70 м, применяют поворотнолопастные гидротурбины. Их колесо по внешнему виду напоминает пароходный гребной винт. Такие турбины выгоднее других потому, что они быстроходнее. А это уменьшает вес и стоимость и самой водяной турбины, и вращаемого ею электрического генератора (подробнее см. ст. «»). Перед подводом воды к турбине устроена частая металлическая решетка. Она задерживает ветки деревьев, куски торфа, щепки и другие предметы, попавшие в реку. Далее вода поступает в трубу, которая имеет спиральную форму и похожа на раковину огромной улитки. В центре ее вращается колесо турбины. Эта труба называется спиральной камерой и служит для подвода воды непосредственно к турбине.

Первая часть поворотно-лопастной турбины (считая по пути движения потока воды) - это направляющий аппарат. Он представляет собой поворачивающиеся вокруг своих осей и легко обтекаемые водой лопатки. Располагаются они по окружности с внешней стороны турбины. Поворачивая лопатки направляющего аппарата, можно уменьшить или увеличить впуск воды в турбину, изменить ее мощность. Так поддерживается постоянное число оборотов турбины при любой ее нагрузке.

Из направляющего аппарата вода поступает на рабочее колесо. Оно, собственно, и использует энергию водяного потока. Рабочее колесо состоит из насаженной на вал втулки, к которой прикреплены плавно изогнутые металлические лопасти. Они могут поворачиваться вокруг своих осей в полном согласии с изменениями положения лопаток направляющего аппарата. У турбин такой конструкции бывает от 4 до 8 лопастей в зависимости от высоты напора воды, при котором они работают. Диаметр рабочего колеса гидротурбины зависит от ее мощности и напора воды и может достигать 9 ж и более.

Из рабочего колеса вода идет во всасывающую трубу. Это третья важная часть гидроустановки. Через нее отработанная вода из турбины выходит в реку ниже плотины. Всасывающая труба создает под рабочим колесом пониженное давление воды, что значительно увеличивает мощность турбины. С такой трубой турбину можно помещать выше нижнего уровня воды.

Гидротурбина преобразует в полезную работу большую часть - около 0,9 - всей энергии водяного потока. Принято поэтому говорить, что к. п. д. водяной турбины очень высок - приблизительно 90%. Полезная отдача гидротурбины с поворотными лопастями рабочего колеса велика не только при полной, но и при частичной ее нагрузке.

Гидротурбины оборудованы автоматическими регуляторами. Они работают с помощью жидкого минерального масла, находящегося под большим давлением. Регулятор сам, без участия человека, открывает и закрывает направляющий аппарат, а также поворачивает лопасти рабочего колеса, т. е. увеличивает или уменьшает мощность турбины.

Турбина электростанции приводит во вращение электрическую машину - гидрогенератор. Электрический генератор, вращаемый водяной турбиной, по устройству и большим размерам значительно отличается от генераторов, устанавливаемых на паровых электростанциях. Вал его обычно располагается вертикально. Одна из частей гидрогенератора - неподвижная станина - статор. Это полый внутри цилиндр, изготовленный из спрессованных пачек тонких стальных листов. С внутренней стороны статора в особых канавках, или пазах, укреплена электрическая обмотка из хорошо изолированных медных проводников.

Внутри статора вращается насаженный на вал барабан - ротор. На нем укреплены полюса сильных электромагнитов. Вы знаете, что если обмотать железный стержень изолированной проволокой и пропустить через нее постоянный электрический ток, то стержень становится электромагнитом. Так намагничиваются полюса ротора.

От вала гидрогенератора приводится в движение небольшой вспомогательный генератор - возбудитель. Он вырабатывает постоянный электрический ток для возбуждения магнетизма в полюсах ротора. Полюса электромагнита быстро движутся около витков обмотки статора. В обмотке возникает переменный электрический ток. При прохождении через обмотки электрического тока выделяется тепло, и они нагреваются. Поэтому через генератор беспрестанно пропускают охлаждающий его воздух.

Работой агрегатов гидроэлектрической установки управляют со специального пульта управления. На щитах - панелях пульта установлены аппараты управления и многочисленные приборы. Они измеряют силу электрического тока, его напряжение и другие важные величины. На пульте, как в зеркале, отражается вся жизнь гидроэлектрической станции. Отсюда ведется надзор за всеми ее машинами и аппаратами, а также управление ими. Пульт управления - это как бы мозг гидростанции, центр ее «нервной системы», получающий сигналы и посылающий точные приказания всем агрегатам.

Гидроэлектрические установки все шире автоматизируются. Некоторые станции работают без людей, при запертых на замок дверях машинного зала.

Напряжение электрического тока, выработанного гидрогенератором, по сравнению с напряжением линии электропередачи, низкое - от 6 до 16 тыс. в. Передавать ток с таким напряжением на далекие расстояния нельзя. Для этого нужно повысить напряжение, например, до 200 тыс. в, а при особенно дальних расстояниях электропередачи - до 500 и даже до 800 тыс. в. Напряжение тока повышают с помощью трансформатора.

Обычно его помещают на открытой площадке недалеко от генератора. В трансформаторе все части неподвижны. Он состоит из тяжелого сердечника, изготовленного из плотно спрессованных и прочно скрепленных болтами тонких стальных листов. На сердечнике - две обмотки из медных проводников, покрытых изоляцией. Через одну обмотку, с небольшим числом витков толстых проводов, проходит вырабатываемый генератором переменный ток генераторного, низкого напряжения. Под действием этого тока железный сердечник намагничивается и возбуждает во второй обмотке, с большим числом витков тонкого провода, переменный электрический ток высокого напряжения.

Величина полученного высокого напряжения во столько раз больше первичного, низкого, во сколько число витков тонкой обмотки больше числа витков обмотки более толстой.

Чтобы ток высокого напряжения во второй обмотке не мог пробить ее изоляцию и не создал бы этим короткого замыкания (а также для хорошего охлаждения), весь сердечник трансформатора, вместе с обмотками, помещается в железный бак. Бак наполнен жидким минеральным маслом, которое не проводит электрического тока. Концы обмоток выпущены нз бака наружу через фарфоровые втулки. Часто трансформаторы делают трехфазными: у них три первичные и три вторичные обмотки. Три конца от тонкой обмотки с большим числом витков присоединены к трем проводам электрической линии, ведущей к потребителям в отдаленные районы.

На местах потребления электроэнергии переменный ток высокого напряжения необходимо вновь преобразовать в ток низкого напряжения, которым питаются осветительные электрические лампы, электродвигатели и т. п. Это обратное превращение электрической энергии так же выполняют трансформаторы. Устройство их подобно описанному выше.

Эти трансформаторы называются понизительными.

Таким способом дешевая энергия Волжской гидростанции передается в район Москвы на очень большое расстояние - 900 км при напряжении 400 тыс. в.



План:

    Введение
  • 1 Особенности
  • 2 Принцип работы
  • 3 Гидроэнергетика в мире
    • 3.1 Крупнейшие ГЭС в мире
  • 4 Гидроэлектростанции России
    • 4.1 Крупнейшие гидроэлектростанции России
    • 4.2 Другие гидроэлектростанции России
    • 4.3 Предыстория развития гидростроения в России
  • 5 Преимущества
  • 6 Недостатки
  • 7 Крупнейшие аварии и происшествия
  • Примечания

Введение

Одна из самых крупных по выработке российская ГЭС - Братская

Плотина Серрон Гранде в Сальвадоре, вогнутая для увеличения прочности тела плотины

Гидроэлектроста́нция (ГЭС) - электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.


1. Особенности

  • Себестоимость электроэнергии на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях.
  • Турбины ГЭС допускают работу во всех режимах от нулевой до максимальной мощности и позволяют быстро изменять мощность при необходимости, выступая в качестве регулятора выработки электроэнергии.
  • Сток реки является возобновляемым источником энергии.
  • ГЭС не оказывает вредного влияния на экологию.
  • Строительство ГЭС обычно более капиталоёмкое, чем тепловых станций.
  • Часто эффективные ГЭС более удалены от потребителей, чем тепловые станции.
  • Водохранилища часто занимают значительные территории, но примерно с 1963 г. начали использоваться защитные сооружения (Киевская ГЭС), которые ограничивали площадь водохранилища, и, как следствие, ограничивали площадь затопляемой поверхности (поля, луга, поселки).
  • Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.
  • Водохранилища ГЭС, с одной стороны, улучшают судоходство, но с другой - требуют применения шлюзов для перевода судов с одного бьефа на другой.
  • Водохранилища делают климат более умеренным.

2. Принцип работы

Схема плотины гидроэлектростанции

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности :

  • мощные - вырабатывают от 25 МВт и выше;
  • средние - до 25 МВт;
  • малые гидроэлектростанции - до 5 МВт.

Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Типичная для горных районов Китая малая ГЭС (ГЭС Хоуцзыбао, уезд Синшань округа Ичан, пров. Хубэй). Вода поступает с горы по чёрному трубопроводу

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды :

  • высоконапорные - более 60 м;
  • средненапорные - от 25 м;
  • низконапорные - от 3 до 25 м.

В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных - ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных - поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож - вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами - стальными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

  • русловые и приплотинные ГЭС. Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.
  • плотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.
  • деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние - спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида - безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище - такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.
  • гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций.


3. Гидроэнергетика в мире

На 2006 год гидроэнергетика обеспечивает производство до 88 % возобновляемой и до 20 % всей электроэнергии в мире, установленная гидроэнергетическая мощность достигает 777 ГВт.

Абсолютным лидером по выработке гидроэнергии на душу населения является Исландия. Кроме неё этот показатель наиболее высок в Норвегии (доля ГЭС в суммарной выработке - 98 %), Канаде и Швеции. В Парагвае 100 % производимой энергии вырабатывается на гидроэлектростанциях.

Наиболее активное гидростроительство на начало 2000-х ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии. В этой стране размещено до половины малых гидроэлектростанций мира, а также крупнейшая ГЭС мира «Три ущелья» на реке Янцзы и строящийся крупнейший по мощности каскад ГЭС. Ещё более крупная ГЭС «Гранд Инга» мощностью 39 ГВт планируется к сооружению международным консорциумом на реке Конго в Демократической Республике Конго (бывший Заир).

На 2008 год крупнейшими производителями гидроэнергии (включая переработку на ГАЭС) в абсолютных значениях являются следующие страны :


3.1. Крупнейшие ГЭС в мире


4. Гидроэлектростанции России

По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

4.1. Крупнейшие гидроэлектростанции России

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Саяно-Шушенская ГЭС 2,56 (6,40) [сн 1] 23,50 [сн 1] ОАО РусГидро р. Енисей, г. Саяногорск
Красноярская ГЭС 6,00 20,40 ОАО «Красноярская ГЭС» р. Енисей, г. Дивногорск
Братская ГЭС 4,52 22,60 ОАО Иркутскэнерго, РФФИ р. Ангара, г. Братск
Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго,РФФИ р. Ангара, г. Усть-Илимск
Богучанская ГЭС [сн 2] 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара, г. Кодинск
Волжская ГЭС 2,58 12,30 ОАО РусГидро р. Волга, г. Волжский
Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга, г. Жигулевск
Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея, пос. Талакан
Чебоксарская ГЭС 1,40 (0,8) [сн 3] 3,31 (2,2) [сн 3] ОАО РусГидро р. Волга, г. Новочебоксарск
Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга, г. Балаково
Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея, г. Зея
Нижнекамская ГЭС 1,25 (0,45) [сн 3] 2,67 (1,8) [сн 3] ОАО «Генерирующая компания», ОАО «Татэнерго» р. Кама, г. Набережные Челны
Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья, пос. Богородское
Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама, г. Чайковский
Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак, п. Дубки

Примечания:

  1. 1 2 Восстанавливается после аварии (2009 год), в скобках указано доаварийное значение.
  2. Строящиеся объекты.
  3. 1 2 3 4 Мощность и выработка при проектном уровне водохранилища; в настоящее время фактическая мощность и выработка значительно ниже, указаны в скобках.

4.2. Другие гидроэлектростанции России

4.3. Предыстория развития гидростроения в России

Первая очередь строительства ГЭС:

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны - ГОЭЛРО, который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником - Днём энергетика. Глава плана, посвященная гидроэнергетике - называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации. Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России - мощностью 7394, в Туркестане - 3020, в Сибири - 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями. Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника.

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо--машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) - вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.


5. Преимущества

  • использование возобновляемой энергии.
  • очень дешевая электроэнергия.
  • работа не сопровождается вредными выбросами в атмосферу.
  • быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

6. Недостатки

  • затопление пахотных земель.
  • строительство ведется там, где есть большие запасы энергии воды.
  • на горных реках опасны из-за высокой сейсмичности районов.

7. Крупнейшие аварии и происшествия

  • Крупнейшей аварией за всю историю ГЭС является прорыв плотины китайского водохранилища Банкяо в 1975 году.Число погибших более 170 000 человек,пострадало 11 млн.
  • 17 мая 1943 года - подрыв британскими войсками по операции Chastise плотин на реках Мёне (водохранилище Мёнезее) и Эдер (водохранилище Эдерзее), повлекшие за собой гибель 1268 человек, в том числе около 700 советских военнопленных.
  • 9 октября 1963 года - одна из крупнейших гидротехнических аварий на плотине Вайонт в северной Италии.
  • В ночь на 11 февраля 2005 года в провинции Белуджистан на юго-западе Пакистана из-за мощных ливней произошел прорыв 150-метровой плотины ГЭС у города Пасни. В результате было затоплено несколько деревень, более 135 человек погибли.
  • 5 октября 2007 года на реке Чу во вьетнамской провинции Тханьхоа после резкого подъема уровня воды прорвало плотину строящейся ГЭС Кыадат. В зоне затопления оказалось около 5 тысяч домов, 35 человек погибли.
  • 17 августа 2009 года - крупная авария на Саяно-Шушенской ГЭС (Саяно-Шушенская ГЭС - самая мощная электростанция России). В результате аварии погибло 75 человек, оборудованию и помещениям станции был нанесён серьёзный ущерб.

Примечания

  1. Интервью профессора Дмитрия Селютина.22.08.2009, «ВЕСТИ» - www.youtube.com/watch?v=y6Vw0wTt1Iw
  2. Гидроэлектрическая станция (ГЭС)
  3. T.M. L"état paufine l"ouverture des barrages à la concurrence - www.lesechos.fr/info/energie/020239999544.htm // Les échos . - Paris: 27/11/2009. - № 20561. - С. 21.
  4. «Электроэнергетика. Строители России. XX век.» М.: Мастер, 2003. С.193. ISBN 5-9207-0002-5
  5. По материалам Комиссии ГОЭЛРО
  6. Березовская ГЭС - syrjanowsk.narod.ru/html/beresowskajages.html
  7. Электроэнергетика Иркутской области. Газета «Наука в Сибири» № 3-4 (2139-2140) 23 января 1998 г. - www-sbras.nsc.ru/HBC/hbc.phtml?26 170 1
  8. ГЭС как оружие - Технологии: Hi-Tech / infox.ru - www.infox.ru/hi-tech/tech/2009/08/21/Krupnyeyshiye_GES.phtml
скачать
Данный реферат составлен на основе статьи из русской Википедии . Синхронизация выполнена 09.07.11 16:21:30
Похожие рефераты: Малая гидроэлектростанция.

Принцип работы ГЭС достаточно прост. Гидротехнические сооружения ГЭС обеспечивают необходимый поток воды, поступающей на лопасти гидротурбины, которая приводит в генератор, вырабатывающий электроэнергию.


Рис.1. Схема одного из типов гидротурбин

Необходимый напор воды образуется плотиной (в случае с плотинным типом ГЭС) или деривацией - естественным стоком воды (деривационные ГЭС). В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию:

  • плотинные ГЭС (рис. 2). Это наиболее распространенные виды крупных гидроэлектрических станций в Кыргызстане. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку и поднимающей уровень воды в ней на необходимую высоту. В этом случае само здание ГЭС располагается за плотиной, в нижней ее части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели.
  • деривационные ГЭС (рис. 3). Такие электростанции строят в тех местах, где есть уклон реки. Необходимое количество воды для создания напора отводится из речного русла через специальные водоотводы (каналы, рукава, арыки). Их уклон значительно меньше, чем средний уклон реки. В итоге вода, через определенное расстояние, поднимается на необходимую высоту и собирается в напорном бассейне. Оттуда, по напорному трубопроводу вода поступает в турбину и, в итоге, попадает опять в ту же реку. В некоторых случая, в начале деривационного канала создается плотина и небольшое водохранилище.


Рис. 2. ГЭС плотинного типа

Рис. 3. ГЭС деривационного типа

Непосредственно в самом здании ГЭС располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидрогенераторы, непосредственно преобразующие энергию воды в электрическую энергию. Также имеется электротехническое оборудование, которое включает в себя устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

  • мощные - вырабатывают от 30 МВт и выше;
  • малые ГЭС - от 1 МВт до 30 МВт;
  • мини ГЭС - от 100 кВт до 1 МВт;
  • микро ГЭС - от 5 кВт до 100 кВт;
  • пико ГЭС - до 5 кВт.

Мощность ГЭС зависит от напора и расхода воды, а также от КПД (коэффициента полезного действия) используемых турбин и генераторов. Из-за того, что по природным причинам расход воды постоянно меняется, в зависимости от сезона, а также еще по ряду других причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

В зависимости от расхода и напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных - ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных - поворотнолопастные турбины в железобетонных или стальных камерах. Принцип работы всех видов турбин одинаков - вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на генератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами - стальными или железобетонными, и рассчитаны на различный напор воды.

В состав ГЭС, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

Ценность ГЭС состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций.

Особенности гидроэлектростанций (плюсы и минусы)

  • (+) стоимость электроэнергии на ГЭС более чем в два раза ниже, чем на тепловых электростанциях.
  • (+) турбины ГЭС допускают работу во всех режимах от нулевой до максимальной мощности и позволяют быстро изменять мощность при необходимости, выступая в качестве регулятора выработки электроэнергии.
  • (+) сток реки является возобновляемым источником энергии
  • (+) значительно меньшее воздействие на воздушную среду и ледники, чем другими видами электростанций.
  • (-) часто эффективные ГЭС более удалены от потребителей и требуют строительства дорогостоящих линий электропередач (ЛЭП).
  • (-) водохранилища часто занимают значительные территории.
  • (-) плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.

Гидроэлектростанция

Гидроэлектроста́нция (ГЭС) - электростанция , в качестве источника энергии использующая энергию водного потока . Гидроэлектростанции обычно строят на реках , сооружая плотины и водохранилища .

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонобразные виды рельефа.

Особенности

Принцип работы

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Крупнейшие ГЭС в мире

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Три ущелья 22,40 100,00 р. Янцзы , г. Сандоупин, Китай
Итайпу 14,00 100,00 Итайпу-Бинасионал р. Парана , г. Фос-ду-Игуасу , Бразилия /Парагвай
Гури 10,30 40,00 р. Карони , Венесуэла
Черчилл-Фолс 5,43 35,00 Newfoundland and Labrador Hydro р. Черчилл, Канада
Тукуруи 8,30 21,00 Eletrobrás р. Токантинс , Бразилия

Гидроэлектростанции России

По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

Крупнейшие гидроэлектростанции России

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Саяно-Шушенская ГЭС 2,56 (6,40) 23,50 ОАО РусГидро р. Енисей , г. Саяногорск
Красноярская ГЭС 6,00 20,40 ОАО «Красноярская ГЭС» р. Енисей , г. Дивногорск
Братская ГЭС 4,52 22,60 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Братск
Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Усть-Илимск
Богучанская ГЭС 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара , г. Кодинск
Волжская ГЭС 2,58 12,30 ОАО РусГидро р. Волга , г. Волжский
Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга , г. Жигулевск
Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея , пос. Талакан
Чебоксарская ГЭС 1,40 (0,8) 3,31 (2,2) ОАО РусГидро р. Волга , г. Новочебоксарск
Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга , г. Балаково
Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея , г. Зея
Нижнекамская ГЭС 1,25 (0,45) 2,67 (1,8) ОАО «Генерирующая компания», ОАО «Татэнерго » р. Кама , г. Набережные Челны
Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья , пос. Богородское
Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама , г. Чайковский
Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак , п. Дубки

Примечания:

Другие гидроэлектростанции России

Предыстория развития гидростроения в России

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны - ГОЭЛРО , который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником - Днём энергетика . Глава плана, посвященная гидроэнергетике - называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации . Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России - мощностью 7394, в Туркестане - 3020, в Сибири - 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями . Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника.

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо-машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) - вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.

Преимущества

  • использование возобновляемой энергии.
  • очень дешевая электроэнергия.
  • работа не сопровождается вредными выбросами в атмосферу.
  • быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

Недостатки

  • затопление пахотных земель
  • строительство ведется только там, где есть большие запасы энергии воды
  • на горных реках опасны из-за высокой сейсмичности районов
  • сокращенные и нерегулируемые попуски воды из водохранилищ по 10-15 дней (вплоть до их отсутствия), приводят к перестройке уникальных пойменных экосистем по всему руслу рек, как следствие, загрязнение рек, сокращение трофических цепей, снижение численности рыб, элиминация беспозвоночных водных животных, повышение агрессивности компонентов гнуса (мошки) из-за недоедания на личиночных стадиях, исчезновение мест гнездования многих видов перелетных птиц, недостаточное увлажнение пойменной почвы, негативные растительные сукцессии (обеднение фитомассы), сокращение потока биогенных веществ в океаны.

Крупнейшие аварии и происшествия

Примечания

См. также

Ссылки

  • Карта крупнейших ГЭС России (GIF, данные 2003 года)